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Abstract

Timed I/O Automata (TIOA) is a mathematical frame-
work for modeling and verification of distributed systems
that involve discrete and continuous dynamics. TIOA can
be used for example, to model a real-time software com-
ponent controlling a physical process. The TIOA model
is sufficiently general to subsume other models in use for
timed systems. The TIOA toolkit, currently under develop-
ment, is aimed at supporting system development based on
TIOA specifications. The TIOA toolkit is an extension of the
| OAtoolkit, which provides a specification simulator, a code
generator, and both model checking and theorem proving
support for analyzing specifications. This paper focuses on
modeling of timed systems with TIOA and the TAME-based
theorem proving support provided in the toolkit for proving
system properties, including timing properties. Several ex-
amples are provided by way of illustration.

1 Introduction

To achieve high assurance in the development of com-
plex systems, an appropriate development framework sup-
porting system specification, implementation, and analysis
is essential. The support provided by the framework should
apply not only to those systems that can be modeled asfinite
state machines but to those that cannot, such as many real-
time embedded or hybrid systems systems involving soft-
ware and/or continuous behavior. Thus an ideal general de-
velopment framework should provide:

1. A mathematical model capable of capturing the range
of discrete and continuous phenomenathat arisein typ-
ical systems,

*This research is funded by AFOSR and ONR

2. A well defined notion in the model of externa (vis-
ible) behavior, and a definition of implementation of
one component by another, or equival ence of two com-
ponents, in terms of their visible behavior,

3. Compositionality—i.e, the ability to build larger sys-
tems by composing smaller components in a manner
that respects the notion of implementation,

4. User-friendly tool support for proving the commonly
encountered types of properties for the models, such
as invariant properties, implementation relations, and
stability, and

5. A basis supporting the use of automatic analysis and
other software toolsto the extent possible.

The Timed Input/Output Automaton (TIOA) toolkit [15,
9], currently under development, providesjust such aframe-
work. The TIOA toolkit, based on the TIOA model [16], is
especially suited to the specification and analysis of real-
time, embedded systems.

Thefocus of this paper ison the theorem proving support
provided inthe TIOA toolkit for the analysis of TIOA spec-
ifications. With a set of small examples, we illustrate how
one can use the toolkit to model timed systems and spec-
ify their properties in the TIOA language, and then verify
the specified properties using the theorem prover PVS [28]
through the interface TAME [3].

The paper is organized as follows. Section 2 gives
an overview of the Timed I/O Automaton (TIOA) model
and the TIOA toolkit that supports its use. Section 3 de-
scribes how one can specify and prove properties of TIOA
models and how the TIOA toolkit supports verifying (or
proof checking) the properties mechanically in PVS. Sec-
tion 4 presents our example TIOA specifications of au-
tomata and their properties, and shows how the properties
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TIOA Toolkit

TIOA file Abstract
automaton A
invariants of A Frontend Syntax Tree

automaton B

Translator

PVS <—‘

(%thcrs toolf : TAME Library for TIOA
.g. Simulator,

invariants of B

forward
simulation
from A to B

B invariants.pvs

Model Checker)
IA2B.pvs

time.pvs timed_automaton.pvs
time_thy.pvs forward_simulation.pvs
pvs—strategies

auto_induct
deadline_reason

try_simp

time_machine.pvs

traj _evol ve and deadl i ne_r eason can be
seen in Section 4.1, Figure 6 and Section 4.2, and Figure 13

respectively.
TAME proof step effect
(apply-traj _evolve t) Compute state time t from now

Deduce that the stopping condition
(apply-traj stop t) cannot hold after timetina
trajectory T unless T ends at t

(apply_traj_invariant t) | Deducetrgectory invariant holds
time t from now

Deduce trgjectory cannot evolve
(deadl i nereason t) more than timet if adeadline
is reached time t from now

Table 1. New TAME strategies for trajectories.



3 Overview of the TIOA proof methodology

The TIOA mathematical model is useful for specifying
timed distributed systems and analyzing properties of the
systems as invariants and simulation relations. The model
also provides a means of organizing proofs of such proper-
ties by induction over the length of the execution of an au-
tomaton into a systematic case analysis with respect to the
actions and trajectories. It is therefore possible to develop
PV S strategies to partialy automate such proofs.

The TIOA methodology for theorem proving involves
(1) writing the specification of a system and its properties
inthe TIOA language, (2) using the translator tool to gener-
ate the PV S equivalent of the system, and then (3) proving
the propertiesin PV Susing TAME strategies (see Figure 1).
The user describes the system in the TIOA language using
the state-transition structure. The user writes simple pro-
gram statements to describe transitions, and specifies tra-
jectories using differential equations. Once the TIOA de-
scription is type checked by the front end of the toolkit, the
trandator generates a set of PVS files. Together with the
TAME library containing PV S definitions for timed 1/O au-
tomata and any additional data type theories, these gener-
ated files specify the automaton and its properties. The user
then uses TAME strategies devel oped for TIOA to provethe
properties of the system in PVS.

By using this approach, the user avoids having to write
the automaton description directly in PVS. Moreover, the
trandator also performs the task of translating program
statements in TIOA into functional relations in PVS, and
trajectorieswith differential equationsinto time-passage ac-
tions. An additional benefit gained from using the approach
isthat the user can also use other toolsin the toolkit includ-
ing the simulator, code generator and model checker.

4 Examples

This section provides three simple examples that to-
gether illustrate how TIOA is used to represent systems and
properties, how trajectories can be used to capture desired
timing behavior, and how system properties can be mechan-
ically verifiedusing PVS. Thefirst example, f i scher ,isa
timed version of Fischer’'s mutual exclusion algorithm. We
use this example to illustrate in some detail how various
features of a TIOA specification, in particular, its trajec-
tories, are represented in PVS. We also illustrate how its
main correctness property, an invariant, can be proved us-
ing TAME. The second example, TwoTaskRace (repre-
senting, asits name suggests, atwo task race), is used asan
example in which the main correctness property is an ab-
straction property (forward simulation). The last example,
t i meout , representing asimple timeout system, isused to
illustrate the support provided for expressing and reasoning
about complex data typesin the TIOA toolkit.

4.1 Fischer’smutual exclusion algorithm

Fischer's mutual exclusion algorithm solves the mutual
exclusion problem in which multiple processes compete for
a shared resource. Figure 2 shows the TIOA specification
of atimed version of the Fischer algorithm.

In the Fischer algorithm, each process proceeds through
different phases in order to get to the criti cal phase
where it gains access to the shared resource. In the au-
tomaton used to model the algorithm, each phase has a cor-
responding action; timing is modeled in the algorithm by
time bounds on the actions. The interesting action cases
aret est, set, and check. Theaction set has an upper
time bound, u_set , while the action check has a lower
timebound | .check, and u_set < | check. When a
process enters the t est phase, it tests whether the value
of a shared variable x has been set by any process; if not,
the process can proceed to the next phase, set , within the
upper time bound, u_set . Inthe set phase, the process
sets a shared variable x to its index. Thereafter, the pro-
cess can proceed to the next phasecheck only after| _set
amount of time has elapsed. In the check phase, the pro-
cess checks to seeif x contains the index of the process. If
S0, it proceedstothecri ti cal phase

The safety property we want to proveis that no two pro-
cessesaresimultaneously inthecri ti cal phase. Weaso
prove simpler invariants to help us prove this main invari-
ant. Figure 3 shows al the invariants that we have proved,
the last invariant being the safety property.

To illustrate how the various elements of an automa-
ton specification in TIOA trandate into TAME, Figure 4
shows the TAME specification output by the TIOA-to-
TAME translator applied to the TIOA specification in Fig-
ure 2. The TAME specification has been edited dightly to
save space. |n the TAME specification, automaton parame-
ters are trand ated as constants, and the wher e clause con-
straining the parameters is expressed as an axiom named
const facts. The state variables are represented as a
record type named st at es. A start predicate is de-
fined to be true for states with the specified initial values.
The actions of the automaton are declared as a subset of the
act i ons data type in the TAME specification. A pred-
icate enabl ed captures the precondition for each action,
while a transition function t r ans captures the post-state
obtained by applying the transition of an action on a given
pre-state. In trandating the effect of an action into the tran-
sition function, the tranglator performs explicit substitutions
in accordance with the program statements in the specifica-
tion of the effect of the action in TIOA, in order to express
each state variable in the post-state explicitly in terms of the
variablesin the pre-state.

The trajectory definition traj in the TIOA specifi-
cation is trandated as a time passage action nu_tr aj
in the TAME specification which has two parameters:



vocabulary fischer_types

2 types process, fischer_decls : THEORY BEG N
PcVal ue enumeration [ pc_rem pc_test, pc_set, pc_check, T
4 pc_l eavetry, pc_crit, pc_leaveexit, pc_reset] | _check: real; u_set: real
const _facts: AXIOM U_set < |_check AND u_set >= 0 AND | _check >= 0
6 automaton fischer(l_check, u_set: Real) where states: TYPE = [#
u_set < |_check A u_set >0 A |_check >0 turn: lift[process],
8 inports fischer_types now real,
signature ) ) ) pc: array[process -> Pcval ue],
10 output try(lg process) !nternal test_(l: process) last_set: array[process -> time],
output crit(i: process) internal set(i: process) first_check: array[process -> real] #]
12 output exH(l: process) !nternal check(!: process) start(s: states): bool = s=s WTH [
output ren(i: process) internal reset(i: process) turn := bottom
14 states .
X . . now : = 0,
turn: Null [pr ocess] :=nil, pc := (lambda(i _0O: process): pc_ren),
16 now Real := 0, | ast _set := (lanmbda(i_0: process): fintinme(u_set))
pc: Array[process, PcValue] := constant(pc_rem, first che;:k = anrbdg(i. o: roceés)' 0] = !
18 | ast _set: Array[process, AugnmentedReal] := constant(u_set), ot = f Lime?)) : ?YﬁEp- N [' 1 i))->stat
first_check: Array[process, Real] := constant(0) _ype(!, i: (fintime?): = [(interval (i, j))->states]
20 transitions actlons._l()STlATYPE (BEG(;\‘. ime?)| dur(t)>=0}
internal test(i internal reset(i nu_traj(delta t:{t:(fintime: ur(t)>=0},
2 pre pcli] :( pz:_t est pre pc[i] = EJC)_reset _ f:f_type(zero,delta_t)): nu_traj?
eff if turn = nil then eff pc[i] := pc_l eaveexit; try(i: process): try?
24 pc[i] := pc_set; turn :=nil; o
last_set[i] := reset_(l: process): reset?
26 now + u_set output try(i) END acti ons
i pre pc[i] = pc_rem vi sible?(a:actions): bool =
28 eff pc[i] := pc_test try?(a) ORcrit?(a) OR exit?(a) OR renP(a)
internal set(i) ti mepassageaction?(a:actions): bool = nu_traj?(a)
30 pre pc[i] = pc_set output crit(i) traj _invariant(a: (ti mepassageaction?))(s:states):bool =
eff turn := enbed(i); pre pc[i] = pc_l eavetry CASES a OF nu_traj(delta_t, F): TRUE ENDCASES
32 pc[i] := pc_check; eff pc[i] := pc_crit traj _stop(a: (tinepassageaction?))(s:states):bool = CASES a OF
last_set[i] :=\infty; nu_traj(delta_t, F):
34 first_check[i] output exit(i) EXI STS(i : process): fintinme(now(s))=last_set(s)(i)
now + | _check; pre pc[i] = pc_crit ENDCASES
36 eff pc[i] := pc_reset traj_evol ve(a: (ti mepassageaction?)) (t:(fintinme?),s:states):states =
internal check(i) CASES a OF
38 pre pc[@] = pc_cheg:k A output rgn‘(i) . nu_traj(delta_t, F): s WTH [now := now(s) + 1 * dur(t)]
first_check[i] < now pre pc[i] = pc_l eaveexit ENDCASES
40 eff if turn = enbed(i) then eff pc[i] := pc_rem enabl ed(a: actions, s:states):bool = CASES a OF
pcli] := pc_leavetry nu_traj (delta_t, F):
42 else ) (FORALL(t: (interval (zero,delta_t))): traj_invariant(a)(F(t)))
pc[i] := pc_test AND

fi;
first_check[i] := 0;
46 (i . - i

. . (FORALL(t: (interval (zero,delta_t))): F(t)=traj_evolve(a)(t, s)),
trajectories try(i): pe(s)(i) = pc_rem

(FORALL(t: (interval (zero,delta_t))): traj_stop(a)(F(t)) => t=delta_t)
AND

48 “aslggpefwthreﬁ] crit(i): pc(s)(i) = pc_|leavetry,
) . exit(i): pc(s)(i) = pc_crit,
50 ev?)li/é process (now = last_set[i]) rem(i): pe(s)(i) = pc_leaveexit,
50 d(now) =1 test(i): pc(s)(i) = pc_test,
set(i): pc(s)(i) = pc_set,
check(i): pc(s)(i) = pc_check AND first_check(s) (i) <= now(s),
H ifi i i reset(i): pc(s)(i) = pc_reset
Figure 2. TIOA specification for fi scher . resel ()
trans(a:actions, s:states):states = CASES a OF
X . . nu_traj(delta_t, F): F(delta_t),
invariant of fischer: try(i): s WTH [pc := pc(s) WTH [(i) := pc_test]],
2 V k: process (pc[k] = pc_set = crit(i): s WTH [pc := pc(s) WTH [(i) := pc_crit]],
(last_set[k] < (now + u_set))) exit(i): s WTH [pc := pc(s) WTH [(i) := pc_reset]],
4 ren(i): s WTH [pc := pc(s) WTH [(i) := pc_reni],
test(i): s WTH [last_set := IF turn(s) = bottom

invariant of fischer: THEN | ast _set (s) WTH

6 vV k: process (now < |ast_set[K]) [(i) :=fintime(now(s) + u_set)]
ELSE | ast_set(s) ENDIF,
8 invariant of fischer: pc 1= IF turn(s) = bottom
V k: process THEN pc(s) WTH [(i) := pc_set]
10 (pc[k] = pc_set = last_set[k] # \infty) cet(i): ELSE pc(s) ENDIF],

12 invariant of fischer: s WH [rurn == Up(:l)'

V i: process YV j: process Ia[st-_)sEI g ;-as-t_sle‘(s) W
: : i) :=infinity],
14 (pc[i] = pc_check first_check := first_check(s) WTH
A turn = enbed(i) [(i) := nows) + | _check],
16 A pcli — pc set pc := pc(s) WTH [(i) := pc_check]],
iH]rst Ehéck[i] > last_set[j]) check(i):
18 - - s WTH [first_check := first_check(s) WTH [(i) := 0],
. . . . pc := IF turn(s) = up(i)
0 Inyai”agrtogésfsl i/thef brocess THEN pc(s) WTH [(i) := pc_l eavetry]
: : ELSE pc(s) WTH [(i) := pc_test] ENDIF],
(pc[i] = pc_leavetry Vv pc[i] = pc_crit reset(i):
22 VvV pc[i] = pc_reset s WTH [turn := bottom ) )
= turn = enbed(i) A pC[j] + pciset) ENDCASES pc := pc(s) WTH [(i) := pc_l eaveexit]]
24 . . . . | MPORTI NG ti med_aut o_l i b@i ne_machi ne
'nva_”ant of f|SC_her- [states, actions, enabl ed, trans, start, vi si bl e?, ti mepassageacti on?,
26 V i: process V j: process | anbda(a: (ti mepassageaction?)): dur(delta_t(a))]
(i #] =pc[i] # pc_crit v pc[j] # pc_crit) END fi scher _decls
Figure 3. TIOA invariants for fi scher . Figure 4. TAME representation of fi scher



Inv_5(s:states):bool =
FORALL (i: process, j: process):
i /=) =>pc(s)(i) /=pc_crit ORpc(s)(j) /= pc_crit

I emma_5: LEMVA FORALL (s:states): reachabl e(s)=> Inv_5(s);

Figure 5. TAME | emma_5 for fi scher

;55 Proof lemma_5-1 for formula fischer_invariants.|ema_5
;5. devel oped with shostak decision procedures
("
(aut o_i nduct)
(("1" ;; Case nu_traj(delta_t_action, F_action)
(appl y_specific_precond)
;7 Applying the precondition
;7 (FORALL (t: (interval (zero, delta_t_action))):
traj _invariant(nu_traj(delta_t_action, F_action))
(F_action(t)))
AND
(FORALL (t: (interval (zero, delta_t_action))):
traj_stop(nu_traj(delta_t_action, F_action))
(F_action(t))
=>1t = delta_t_action)
AND
(FORALL (t: (interval (zero, delta_t_action))):
F_action(t) =
traj _evolve(nu_traj(delta_t_action, F_action))
s (t, prestate))
(apply_traj_evolve "delta_t_action")
;; Using the fact that
F_action(delta_t_action) =
prestate WTH
B [now := 1 * dur(delta_t_action) + now(prestate)]
(try_sinp))
("2" ;; Case crit(i_action)
(appl y_speci fic_precond)
;3 Applying the precondition
i, pc(prestate)(i_action) = pc_|l eavetry

(apply_inv_lemma "4" "i_theorent "j_theorent)
v, Applying the | emma
;; FORALL (i: process, j: process):

pc(prestate) (i) = pc_leavetry OR
pc(prestate) (i) = pc_crit OR pc(prestate)(i) = pc_reset
=> turn(prestate) = up(i) AND pc(prestate)(j) /= pc_set

(apply_inv_lemma "4" "j_theorent "i_theorent)
; Applying the | emma
; FORALL (i: process, j: process):

pc(prestate) (i) = pc_leavetry OR

pc(prestate) (i) = pc_crit OR pc(prestate)(i) = pc_reset
;5 => turn(prestate) = up(i) AND pc(prestate)(j) /= pc_set
(try_sinp))))

Figure 6. TAME proof of | enma 5 in fi scher

del t a_t, the duration of the trgectory, and F, a func-
tion representing the trajectory, which maps time values to
states. The definitions t r aj _i nvari ant, traj _st op,
and t r aj _evol ve capture the invariant, stopping condi-
tion and evolve clause of the trgjectory definition respec-
tively. The effect of the “trgjectory action” nu_traj is
constrained—and thus, effectively, captured—by the pre-
condition of nu_t raj , which asserts that (1) the invari-
ant holds throughout the duration of the trajectory, (2) the
stopping condition holds only in the last state of the trajec-
tory, and (3) the evolution of the state variables satisfies the
evolve clause. The transition function for nu_traj sim-
ply returns the post-state obtained by applying the trajec-
tory function F after an elapsed time of del ta_t. This
method of representation, adapted from a technique of
Luchangco [21], allowst r ans to be represented as afunc-

tion from states and actions to states while allowing the re-
sult of anu_t raj “action” to be nondeterministic.

The new TAME dtrategies in Table 1, combined with
the existing TAME strategies, provide a set of proof steps
that allow the f i scher invariants shown in Figure 3 to
be proved interactively in PVS in a clear, high-level fash-
ion. The TIOA-to-TAME trandator transforms the six in-
variantsin Figure 3into TAME invariantsand lemmas num-
bered starting from 0. Thus, the goal safety property, thelast
invariant in Figure 3, becomes the TAME invariant/lemma
pair shown in Figure 5.

Figure 6 shows a verbose TAME proof of | enma_5
in Figure 5. To create this proof, which can be rerun in
PV'S, the user simply types in the eight TAME proof steps
in the proof script—( aut o_i nduct ), (appl y_speci -
fic_precond), and so on. The comments in this proof
(which appear astext after semicolons) are generated by the
TAME strategies, and serve to label the proof branches and
document the facts introduced by the proof steps in these
branches. Because TAME automatically handles “trivial”
cases, only the proof steps requiring human guidance need
to be recorded. This proof can be understood as follows:
The proof step aut o_i nduct automates as far as possi-
ble the standard initial steps of a proof by induction on
the reachable states, including skolemization. The val-
ues with names ending in “_t heor ent or “_acti on” are
skolem constants standing for variables in the lemma and
parameters in the current action, respectively. The name
pr est at e refers to the prestate of the current action, and
the values of state variables in any state s are represented
as functions of s. The base case and all the action cases
except nu_traj (deltat _action, F.action) and
crit(i_action) are trivid. The nu_traj (del -
ta_t_action, F.action) caseis proved by recaling
the full precondition with appl y_speci fi c_pr econd,
and then using the new TAME step t r aj _evol ve in T
ble 1 to compute what the current state will be after time
del t a_t _acti on. Oncethisisdone, only “obvious’ rea-
soning is needed, which is performed by t ry _si np. The
proof inthecrit (i _acti on) case first recals the pre-
condition and then usesappl y_i nv_l emra to apply two
earlier invariant lemmas to appropriate instances of their
quantified variables. Then, only “obvious’ reasoning with
t ry_si np isneeded to complete the proof.

42 A twotask race

The two-task race system (see Figure 7 for its TIOA de-
scription) increments a variable count repeatedly, within
al and a2 time, al < a2, until it is interrupted by a
set action. This set action can occur between b1l and
b2 time from the start, where bl < b2. After set,
the value of count is decremented (every [al, a2] time)
and ar eport actionistriggered when count reaches 0.



automaton TwoTaskRace(al, a2, bl, b2: Real) where
2 al >0Aa2>0Abl>0Ab2>0Aa22>al Ab2>bl

4 signature
internal increnent
6 internal decrenent
internal set
8 output report
states
10 count: Int := 0,
flag: Bool := false,
12 reported: Bool := false,
now. Real :=0,
14 first_main: Real := al,
| ast _mai n: Augnent edReal := a2,
16 first_set: Real := bil,
| ast _set: AugnmentedReal := b2
18 transitions
internal increnent
20 pre —flag A now > first_main
eff count := count + 1;
22 first_main := now + al;
last _main := now + a2
24 internal set
pre =flag A now > first_set
26 eff flag := true;
first_set :=0;
28 last _set :=\infty
internal decrenent
30 pre flag A count > 0 A now > first_main
eff count := count - 1;
32 first_main := now + al;
last _main := now + a2
34 output report
pre flag A count = 0 A —reported A now > first_main
36 eff reported := true;
first_min :=0;
38 last_main :=\infty
trajectories
40 trajdef traj
stop when now = | ast_main VvV now = | ast_set
42 evolve
d(now) =1

Figure 7. TwoTaskRace in TIOA

automaton TwoTaskRaceSpec(al, a2, bl, b2: Real) where
2 al >0 Aa2>0Abl>0Ab2>0AnAa2>al Ab2>bl

signature
4 output report
states
6 reported: Bool := false,
now. Real := 0,
8 first_report: Real :=
if a2 < bl then nin(bl, al) + (((bl - a2) * al) / a2) else al,
10 | ast _report: AugnentedReal :=
b2 + a2 + ((b2 * a2) / al)
12 transitions
output report
14 pre —reported A now > first_report
eff reported := true;
16 first_report :=0;
last_report :=\infty

18 trajectories
trajdef pre_report
20 invariant —reported

stop when now = | ast _report
22 evolve
d(now) =1
24 trajdef post_report
invariant reported
26 evolve
d(now) =1

Figure 8. TwoTaskRaceSpec in TIOA

We want to show that the time bounds on the occurrence
of the r eport action are: lower bgund: if a2 < bl
then min(bl,al) + bl-gz al ¢l se a1, and

upper bound: b2 + a2 + b—zt,:léﬁ. Thisproperty isproved
by specifying an abstract automaton TwoTaskRaceSpec
which performsar epor t action within these bounds (see
Figure 8) and defining a forward simulation relation from
TwoTaskRace to TwoTaskRaceSpec (see Figure 10).

TwoTaskRaceSpec_decl s : THECRY BEG N

% Traj ectory invariants
traj _invariant(a: (ti mepassageaction?))
(s:states): bool =
CASES a OF
nu_pre_report(delta_t,F): NOT reported(s),
nu_post _report(delta_t,F): reported(s)
ENDCASES
% Traj ectory stopping conditions
traj _stop(a:(tinmepassageaction?))
(s:states):bool =
CASES a OF
nu_pre_report(delta_t,F):
finti m(nows))=last_report(s),
nu_post _report(delta_t,F):
true
ENDCASES

% Traj ectory evol ve cl auses
traj _evol ve(a: (ti mepassageaction?))
(t:(fintine?),s:states):states =
CASES a OF
nu_pre_report(delta_t,F):
s WTH [now : = now(s) + 1 * dur(t)],
nu_post _report(delta_t,F):
s WTH [now : = nowm(s) + 1 * dur(t)]
ENDCASES
% Enabl ed
enabl ed(a: actions, s:states):bool = CASES a OF
nu_pre_report(delta_t,F):
(FORALL (t:(interval (zero,delta_t))):
traj _invariant(a)(F(t)))
AND (FORALL (t:(interval (zero,delta_t))):
traj _stop(a)(F(t)) =>t = delta_t)
AND (FORALL (t:(interval (zero,delta_t))):
F(t) = traj_evolve(a)(t, s)),
nu_post _report(delta_t,F):
(FORALL (t:(interval (zero,delta_t))):
traj _invariant(a)(F(t)))
AND (FORALL (t:(interval (zero,delta_t))):
traj _stop(a)(F(t)) =>t = delta_t)
AND (FORALL (t:(interval (zero,delta_t))):
F(t) = traj_evolve(a)(t, s)),
report: NOT reported(s)
AND now(s) >= first_report(s)
ENDCASES
% Transi tion function
trans(a:actions, s:states):states = CASES a OF
nu_pre_report(delta_t,F): F(delta_t),
nu_post _report(delta_t,F): F(delta_t),
fini

report: s WTH [last_report :=infinity,
reported : = true,
first_report := 0]

ENDCASES
END TwoTaskRaceSpec_decl s

Figure 9. TwoTaskRaceSpec trajectories in
TAME.

The abstract automaton TwoTaskRaceSpec has two
trgjectories. pre_report and post report. The
TAME representation of TwoTaskRaceSpec (see Fig-
ure 9) illustrates how the trandator represents multiple tra-
jectories in TAME: the preconditions in enabl ed and
postconditions in t r ans are expressed identically, while
the details of the trgjectories are captured in separate cases
intraj i nvari ant ,traj stop,andtraj _evol ve.

The TIOA-to-TAME trandator transforms the TIOA
specification in Figure 10 of the forward simulation rela-
tion into the PVS theory in Figure 11 that asserts (as a
theorem to be proved) the property f or war d_si nul a-
t i on. Thetheory in Figure 11 followsthe TAME template



forward simulation from TwoTaskRace to TwoTaskRaceSpec:
V al: Real V a2: Real V bl: Real V b2: Real
V last_set: Real V last_nmin: Real V last_report: Real
(al >0 Aa2>0Abl>0ADb2>0AhAa2>al Ab2>bl
A last_set>0 A | ast_set=TwoTaskRace.| ast _set
A last_mai n>0 A | ast_mai n=TwoTaskRace. | ast _mai n
A last_report>0 A | ast_report=TwoTaskRaceSpec.| ast_report
= TwoTaskRace. reported = TwoTaskRaceSpec. reported
A TwoTaskRace. now = TwoTaskRaceSpec. now
A (—-TwoTaskRace.flag A | ast_main < TwoTaskRace. first_set
= TwoTaskRaceSpec. first_report <
(m n(TwoTaskRace. first_set, TwoTaskRace.first_main)
+ ((TwoTaskRace. count
+ ((TwoTaskRace.first_set - last_main) / a2)) * al)))
A (TwoTaskRace.flag Vv | ast_main > TwoTaskRace. first_set
= TwoTaskRaceSpec.first_report <
(TwoTaskRace. first_main + (TwoTaskRace.count * al)))
A (—-TwoTaskRace. flag A TwoTaskRace.first_main < | ast_set
= last_report > (last_set + ((TwoTaskRace.count + 2
+ ((last_set - TwoTaskRace.first_main) / al)) * a2)))
A (—( TwoTaskRace.reported) A (TwoTaskRace.flag Vv
TwoTaskRace.first_min > |last_set) = | ast_report
> (last_main + (TwoTaskRace. count * a2))))

Figure 10. Forward simulation from
TwoTaskRace to TwoTaskRaceSpec

TwoTaskRace2TwoTaskRaceSpec: THEORY BEG N
| MPORTI NG TwoTaskRace_i nvari ants
| MPORTI NG TwoTaskRaceSpec_i nvari ants
timed_auto_lib: LIBRARY = "../tinmed_auto_lib"
MA: THEORY = tinmed_auto_|ib@ined_aut omat on
:-> TwoTaskRace_decl s
MB: THEORY = tinmed_auto_|ib@ined_aut onaton
:-> TwoTaskRaceSpec_decl s
amap(a_A: {a: MA actions |
vi sible?(a) AND NOT tinepassageaction?(a)}): MB.actions =
CASES a_A of report: report ENDCASES
ref(s_A: MA states, s_B: MB.states): bool =
FORALL (last_set: real, last_main: real, last_report: real):
al>0 AND a2>0 AND b1>=0 AND b2>0 AND a2>=al AND b2>=bl
AND | ast_set >= 0 AND fintine(last_set) = |ast_set(s_A)
AND | ast_main >= 0 AND fintinme(last_main) = |ast_main(s_A)
AND | ast_report >= 0 AND fintime(last_report) = |ast_report(s_B)
=> reported(s_A) = reported(s_B) AND now(s_A) = now(s_B)
AND (NOT flag(s_A) AND last_main < first_set(s_A) =>
first_report(s_B) <= min(first_set(s_A), first_main(s_A))
+ count(s_A) + (first_set(s_A) - last_min)/a2*al)
AND (flag(s_A) ORlast_main >= first_set(s_A) =>
first_report(s_B) <= first_nain(s_A) + count(s_A)*al)
AND (NOT flag(s_A) AND first_main(s_A) <= |ast_set =>
last_report >= | ast_set + count(s_A) + 2
+ (last_set - first_main(s_A))/al*a2)
AND (NOT reported(s_A)
AND (flag(s_A) OR first_main(s_A) > |last_set)
=> last_report >= last_main + count(s_A) * a2)
I MPORTI NG tinmed_auto_| i b@orward_sinulation[ MA, MB, ref,
(LAVBDA( a: MA. actions): tinmepassageaction?(a)),
(LAVBDA( a: {a: MA. acti ons| ti nepassageaction?(a)}):dur(delta_t(a))),
amap]
fw_simlation_thm THEOREM forward_si mul ation

END TwoTaskRace2TwoTaskRaceSpec
Figure 11. Simulation relation in TAME

invariant of TwoTaskRace:
al >=0/\ a2 >0 /\ bl >=0/\
b2 >0 /\ a2 >= al /\ b2 >= bl
invariant of TwoTaskRace: now >= 0
invariant of TwoTaskRace: (now + b2) >= 0
invariant of TwoTaskRace: flag => last_set = \infty
invariant of TwoTaskRace: now >= 0 => |[ast_nain >= now

Figure 12. TwoTaskRace invariants 0-4.

for formulating abstraction relations between automata de-
scribed in [26]. The theory f or war d_si nul ati on im-
ported in Figure 11 just before the statement of the theo-
rem provides the generic definition in PV'S of the property
forward_si mul at i on stating what it means for a re-
lation between two automata to be a forward simulation.
The PV'S formulation of the forward simulation property is

;35 Proof lemma_4-1 for fornula
;75 TwoTaskRace_invariants. | emma_4
;5 devel oped with shostak decision procedures
("
(aut o_i nduct)
(("1" ;; Base case
(const _facts)
;7 Applying the facts about the constants:
al > 0 AND a2 > 0 AND bl >= 0 AND
s b2 > 0 AND a2 >= al AND b2 >= bl
(try_sinp))
("2" ;; Case nu_traj(delta_t_action, F_action)
(appl y_speci fi c_precond)
;3 Applying the precondition
;7 (FORALL (t: (interval (zero, delta_t_action))):
traj _invariant(F_action(t)))
;. AND
;7 (FORALL (t: (interval (zero, delta_t_action))):
; traj _stop(F_action(t)) =>t = delta_t_action)
AND
(FORALL (t: (interval (zero, delta_t_action))):
M F action(t) = traj_evolve(t, prestate))
(apply_traj _evolve "delta_t_action")
;7 Using the fact that
F_action(delta_t_action) =
prestate WTH
[now := 1 * dur(delta_t_action) + nowprestate)]
(apply_inv_lemma "1")
;5 Applying the | enma
;; now(prestate) >= 0
(deadl i ne_reason "l ast_main(prestate)")
;; Reasoning that tinme cannot pass beyond
;; last_main(prestate)
(try_sinp))
("3" ;; Case increnent
(const _facts)
;7 Applying the facts about the constants:
; al > 0 AND a2 > 0 AND bl >= 0 AND
s b2 > 0 AND a2 >= al AND b2 >= bl
(try_sinp))
("4" ;; Case decrenent
(const _facts)
; Applying the facts about the constants:
al > 0 AND a2 > 0 AND bl >= 0 AND
M b2 > 0 AND a2 >= al AND b2 >= bl
(try_sinp))
("5" ;; Case report
(try_sinp))))

Figure 13. Proof of TwoTaskRace invariant 4.

based on the definition in [24]. The proof of this property
for TwoTaskRace and TwoTaskRaceSpec usesinvari-
ants of both automata.

Theinvariantsof TwoTaskRace and TwoTaskRace-
Spec needed for the forward simulation proof have al
been proved in TAME. The proofs of these invariants
are al quite smple; in fact, al of the invariants needed
for TwoTaskRaceSpec are proved automatically by the
TAME induction strategy aut o_i nduct . The proofs of
afew of the invariants for TwoTaskRace are interesting
because they illustrate the use of the new TAME strategy
deadl i ne_r eason, which was not used in the invari-
ant proofs for fi scher. One such invariant is invariant
4 in Figure 12, whose TAME proof is shown in Figure 13.
Invariant 4 essentially says that in the TIOA model of
TwoTaskRace, the current time now cannot pass beyond
the deadline | ast _mai n. In this proof, aut o_i nduct
has determined that the base case and four of the five pos-
sible action cases are nontrivial. The crux of this proof



is the reasoning in the single time passage case, namely,
the action case nu_traj (del ta_t _acti on) . After us-
ing appl y_speci fi c_precond and appl y_traj _e-
vol ve to compute the state after timedel t a_t _acti on
and using appl y_i nv_l emma to use invariant 1 to es-
tablish that now >= 0 at the beginning of the trajectory,
the new TAME step deadl i ne_r eason arguesthat now
<= | ast _mai n at the end of the trajectory. The step
try_si np then completes the proof with “obvious rea-
soning”. The remaining cases are easily proved using
“obvious reasoning” following, in some cases, the use of
const facts tointroduce facts about the constants in
the specification.

TAME also provides strategies for establishing abstrac-
tion relations between automata, including forward simu-
lation. Forward simulation proofs have a high-level struc-
ture similar to the structure of induction proofs of in-
variants; however, rather than beginning with the proof
step aut o_i nduct, they begin with the proof step
prove_f wd_si m For more details, see [26].

4.3 A simpletimeout system

A simple timeout system consists of a sender, a delay
prone channel, and a receiver (see Figure 14 for its TIOA
description). The sender sends messages to the receiver,
within ul time after the previous message has been sent.
A timed_nmessage_Queue delays the delivery of each
message by at most b time. A failure can occur at any time,

automaton tineout(ul, u2, b: Real)
2 where ul >0 Au2 >0Ab>0Au2>(ul +b)
inports tinmed_queue
4 signature
internal send(m M

6 internal receive(m M
output fail
8 output tinmeout
states
10 p_cl ock: AugnentedReal := 0,
t_clock: AugmentedReal := u2,
12 suspect ed: Bool := fal se,
failed: Bool := false,
14 now. Real := 0,
queue: tined_nessage_Queue := nmQ
16 transitions
internal send(m
18 pre now > 0 A —failed A p_clock = now
eff if (now + ul) > 0 then p_clock := now + ul fi;
20 if (now + b) > | atest_deadline(queue) then
queue := enQ MKtinmed_nessage(m now + b), queue)
22 fi;
internal receive(m
24 pre now > 0 A enQ gn(queue) A m= earliest_msg(queue)
eff if (now + u2) > 0 then t_clock := now + u2 fi;
26 if enQ gn(queue) then queue := deQ queue) fi
output fail
28 pre - failed
eff failed := true;
30 p_clock :=\infty
output tinmeout
32 pre now > 0 A —suspected A t_clock = now
eff suspected := true;
34 t_clock :=\infty
trajectories
36 trajdef traj
stop when now > 0 A (now = p_clock Vv now = t_clock
38 V now = earliest_deadl i ne(queue))

evolve d(now) =1

Figure 14. TIOA description of t i meout

after which the sender stops sending. Thereceiver times out
after not receiving a message for at least u2 time.

We are interested in proving the two following proper-
tiesfor this system: (1) Safety: A timeout occurs only after
a failure has occurred; (2) Timeliness: A timeout occurs
within u2 + b time after afailure. The safety property can
be captured by an invariant of the system. Asin the two-
task race example, to show the timeliness, we first create
an abstract automaton that times out within u2 + b time of
occurrence of a failure, and then we prove a forward sim-
ulation from the system to its abstraction. Both the safety
and timeliness properties have been proved using the TAME
strategies in a manner analogous to the invariant and for-

vocabul ary tined_queue
types M tined_nessage_Queue, tined_nessage
operators
nQ@ ->tinmed_nmessage_Queue
enQ gn: tinmed_nessage_Queue -> Bool
deQ tinmed_nessage_Queue -> tined_nessage_Queue
enQ tinmed_nessage, tined_nessage_Queue
-> tinmed_nessage_Queue
MKt i med_nessage: M Real -> tinmed_nessage
earliest_nsg: tined_nessage_Queue -> M
earliest_deadline: tined_nessage_Queue
-> Augnent edReal
| atest _deadl i ne: tinmed_nessage_Queue -> Real
time_ordered: tinmed_nessage_Queue -> Bool
nthQ timed_nessage_Queue, Nat -> M
lengthQ tined_nmessage_Queue -> Nat
deadline: M-> Real

Figure 15. TIOA declaration of custom data
types and operators used in ti meout .

Queue[ T: TYPE] : DATATYPE
BEG N
mQ mQ?
enQ(last: T, before_last: Queue): enQ?
END Queue
Queue_t hy[ T: type]: THEORY
BEG N
| MPORTI NG Queue[ T]
I engt hQ( g: Queue): RECURSI VE nat =
IF mtQ?(gq) THEN O
ELSE | engt hQ( before_last(q)) + 1 END F
MEASURE reduce_nat (0, (LAMBDA (x:T), (n:nat): n+l));
deQ(q: (enQ@?)): RECURSI VE Queue =
IF mQ?(before_last(q)) THEN nt Q
ELSE enQ(l ast(q),deQ before_last(q))) END F
MEASURE | engt hQ( q) ;
nthQ(q: (enQ?),
n:{i:nat| O<=i & i<=lengthQ(q)-1}): RECURSIVE T =
IF n=0 THEN | ast (q) ELSE nthQ before_last(qg),n-1) END F
MEASURE n;

END Queue_t hy
ti med_nessage_Queue_t hy[ M TYPE] :
BEG N

THECRY

I MPORTI NG ti med_nessage_t hy[M

| MPORTI NG Queue_t hy[ti ned_nessage]

ti med_nessage_Queue: TYPE = Queue[tined_nessage];

time_ordered(q:timed_nessage_Queue): bool =
FORALL (i: [upto(lengthQq) - 1)],

jr {ninat | n>=1i &n <=lengthQ(q)-1}):
deadl i ne(nthQ(q,i)) >= deadline(nthQ(q,j));
END ti med_nessage_Queue_t hy

Figure 16. Sample PVS definitions of custom
data types and operators used in ti neout .



ward simulation proofs in the previous examples, with one
extra complication: the need to introduce knowledge about
special datatypes referred to in the TIOA specifications.

The timeout system makes use of a custom data type
ti med_nmessage_queue. TIOA providesavocabul a-
ry syntax to allow the user to declare custom data types
and operators. Figure 15 shows how the data type for
t i med_message_queue and the associated operators are
declared in TIOA. The actual PV S definitions of these types
and operators are provided as part of aTIOA library of data
type theories; Figure 16 shows a sample of these defini-
tions. Aside from the PVS operator enQ? (which imple-
ments the TIOA operator enQ.qn for querying whether a
ti med_nmessage_queue isanonempty queue), the PVS
vocabulary isidentical to the TIOA vocabulary. Properties
of these data types have been proved in PV'S, and have been
used in proofs of the specification properties.

5 Discussion

Developing theorem proving support. Our approach to
developing appropriate theorem proving support for TIOA
isto study many examples of TIOA specifications and their
properties and identify what is needed for implementing
a standard, straightforward set of proof steps sufficient to
mechanize proofs of the properties. One lesson we have
learned is that the details of the specification template that
atrandator to PVS targets, if chosen carefully, can greatly
facilitate the implementation of PVS strategies. Details of
the TAME template for TIOA that have proved helpful for
strategy development include the overall scheme for repre-
senting trajectories illustrated in Figure 9 and the scheme
for representing the start state predicate st art (s) asan
equality of the foom s = ..., possibly in conjunction
with additional restrictions (see, for example, Figure 4).
Another detail of our trandlation scheme is the use of sym-
bolic computation, if necessary, to permit the effects of tran-
sitions, which are defined in TIOA as the effect of a se-
guence of computations, to berepresentedint r ans by ex-
plicit updates to state variables. This allows the theorem
prover to reason directly about new state values of individ-
ual variables with less effort.

One goal in developing support for interactive theorem
proving isto find a minimal set of proof steps that are nat-
ural to use in high level reasoning and that are sufficient
(or nearly so) for mechanizing proofs of properties. Study-
ing many examples has helped us in this regard. For exam-
ple, we observed that many proofs included the observation
that time cannot pass beyond a given deadline unless some
discrete action occurs. This observation led us to include
deadl i ne_r eason among our set of proof steps.

Mechanizing proofs. The theorem proving support we
aredeveloping for TIOA does not make mechanizing proofs
of properties automatic, but it does make it smpler. A

user who wishes to prove properties of a TIOA specifica
tion using TAME must in general be a domain expert for
the system modeled in TIOA. To prove the desired safety
or simulation properties, the user often must first find an
appropriate set of supporting lemmas. Doing this may re-
quire some creativity; some guidance on how to go about
it can be found in [24]. The user must also be able to
sketch out at a high level why, based on the set of sup-
porting lemmas, a given property is expected to hold. To
produce a mechanical proof of the property, the user then
can apply TAME reasoning steps that match this high level
reasoning. Typicaly, this can be done using steps such
as const facts, appl y_i nv_l enma, appl y_spe-
ci fic_precond,deadl i ne_reason,andsoon,toin-
troduce the facts appealed to in each nontrivial case in the
proof sketch, and then invoking t r y_si np to do the “ob-
vious’ reasoning based on these facts.

Whileit is good to have a mechanical check of aproof’s
validity, it is equally important to have some feedback on
what went wrong if the mechanical check fails. For failed
proofs, TAME provides some useful feedback: the saved
TAME proof script can be used to detect the place in the
proof where the proof breaks down. The user can then re-
view the high level reasoning to see whether thereisan error
or if introducing additional facts can complete the proof.

Scalability. We have begun experimentation with using
the TAME support for TIOA on larger examples. Our first
larger exampleisthe Small Aircraft Traffic System protocol
SATS developed at NASA Langley. An abstract model of
this system has been defined in [8]. An IOA version of this
model has been represented and verified in PVS[29]. We
have used the TIOA-to-TAME trandator to represent the
IOA model in TAME, and have begun redoing the proofs
using the TAME strategies.

The SATS example has raised an issue that is likely
to arise in many large examples: the use by specifiers of
multi-layered definitions of application-specific functions
and predicates. One way to manage the many definition
expansions for proof efficiency would be to expand them
in layers to alow reasoning to proceed at the highest pos-
sible layer. A goa for the translator is to generate “local
strategies’ for a specific application that group definitions
by layer. A scheme of this sort is used in the SCR-to-TAME
trangdator to increase the efficiency of the TAME strategies
that support reasoning about SCR automata [ 3].

6 Related work

Previous work has been performed to develop tools
to trandate specifications written in the IOA language to
the language of various theorem provers, for example,
Larch [6, 10], PVS[7], and Isabelle [30, 27]. Our imple-
mentation of the TIOA to PVS trandator described in [20]
builds upon [6]. The target PV S specifications of thistrans-



lator strongly resemble TAME specifications. In addition,
an early version of TAME'sdeadl i ne_r eason strategy
was implemented as the PV S strategy deadl i ne_check
described in [20]. The TIOA-to-TAME trandlator is essen-
tially a version of the TIOA-to-PV S trandlator of [20] with
modifications that allow the straightforward implementa-
tion of new TAME strategies for TIOA and the most ef-
fective use of existing TAME strategies. A more complete
description of the recent improvements made to the transla-
tion scheme and strategies described in [20] can befound in
[19]. In[12], adightly different approach using urgency
predicates instead of stopping conditions or invariants to
limit trajectories is used to describe timed 1/0O automata.
An approach to proving invariant properties of timed 1/0
automata using urgency predicates is described, but no tool
support. A proposed design for supporting urgency predi-
catesin the TIOA toolkit isgivenin [4].

7 Conclusion

The TIOA framework is ultimately intended to sup-
port all phases of system development from specification,
through verification and validation, to implementation. In
this paper, we have focused on the usability of the TIOA
framework for modeling and mechanica verification of
properties of timed systems with both discrete and contin-
uous transitions. We have described the theorem proving
support provided, and illustrated how it is used in examples
where the properties of interest are invariant properties or
simulation properties, and where the models involve non-
trivial datatypes.

Our plan for the future is experiment with more complex
examples, such as SATS or the Dynamic Host Configura-
tion Protocol DHCP (using models based on the work de-
scribed in [13]), to explore extensions and improvementsto
our proof support.
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